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Abstract – 
The long-term quality of the asphalt layer is 

crucial for maintaining the functionality of roads. 
Despite extensive research on predicting pavement 
failure modes and the effect of design and road use on 
the quality of the asphalt layer, there is limited 
understanding of how the quality of road construction 
impacts the long-term quality of asphalt pavement. 
This paper presents a data-driven approach to 
studying the impact of construction process quality on 
the International Roughness Index (IRI) of roads. 
Two machine learning models (Random Forest and 
Gated Recurrent Unit) were compared in a case study, 
with the GRU model (R2 of 0.8284) outperforming the 
RF model (R2 of 0.5498). Results showed that 
construction process quality was the third most 
significant factor affecting IRI. 
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1 Introduction 
The demand for road infrastructure and longer 

guarantee periods has driven the asphalt construction 
industry to prioritize quality in order to remain 
competitive [1]. However, the industry is reliant on 
craftsmanship and experience-based decision-making, 
making quality assurance a challenge. To address this, 
the Process Quality Improvement (PQi) methodology 
was proposed by Miller [2] and has since been widely 
adopted as part of asphalt construction quality control 
methods in the Netherlands [3–5]. This methodology 
uses advanced sensing technologies in an integrated 
network, the Internet of Things (IoT), to monitor 
compaction efficiency/consistency and temperature 
homogeneity during the construction process. The 
collected data is used to evaluate process quality and 
provide feedback to contractors. While it is known that 
construction process quality impacts the long-term 
quality of asphalt pavement [6], the extent of this impact 

remains unknown. Further investigation is needed to 
determine the effect of operational strategies on the 
quality of the asphalt pavement. 

At present, the correlation between the process and 
product quality of the asphalt pavement is still treated 
implicitly and intuitively during the construction 
practices, primarily owing to the system's non-linearities. 
In the past few years, attempts have been made by various 
studies to develop data-driven empirical models 
regarding the long-term performance of asphalt 
pavement [7–10]. Various data-driven techniques, such 
as machine learning (ML), have been applied to extract 
valid patterns and knowledge. Particularly, the pavement 
condition regarding the roughness, which is represented 
by International Roughness Index (IRI), has received the 
most attention. However, although the data-driven 
techniques have been successfully applied to these 
studies, investigations in these studies were confined to 
correlating the pavement's long-term performance with 
indicators during the operational stage, such as traffic 
intensities, climate conditions, and previous inspections 
of the pavement conditions. To provide a more 
comprehensive understanding of the pavement 
performance it is essential to take the quality of the 
construction process into consideration.  

On these premises, this research aims to explicitly 
investigate the correlations between the asphalt 
construction process quality (PQi data) and the long-term 
asphalt pavement quality, focusing primarily on IRI. A 
dataset covering the design, construction, and operation 
phases of road construction lifecycle was developed 
using data from two highway sections in the Netherlands, 
resulting in 62 samples. Considering the general 
performance of non-linear regression and the time-
variant characteristic of the IRI data, Random Forest (RF) 
and Gated Recurrent Unit (GRU) were selected. The 
GRU model outperformed the RF model with an R2 of 
0.8284 compared to 0.5498. Permutation feature 
importance analysis revealed the construction process 
quality indicator as an important factor for pavement 
performance. 

The remainder of the paper is structured as follows. 
First, the methodology of the research is presented. This 
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is followed by a case study demonstrating the validation 
of the proposed method. The paper ends with a discussion 
and a conclusion. 

2 Methodology 
Figure 1 provides an overview of the methodology 

applied in this research. In general, this methodology 
included the development of the dataset, ML model 
development, and evaluation and interpretation. Overall, 
the dataset development phase mainly focused on 
building a structured dataset that can be used for ML-
based analysis. The second phase was dedicated to the 
development of ML models. An optimization algorithm 
was used to find the optimal configuration of the ML 
models. In the last phase, first, the developed ML models 
were evaluated based on the pre-defined metrics and then 
interpreted by analyzing the importance of the input 
features, i.e., how changes within the features influence 
the overall performance of the models. This can give 
more insights regarding the inner mechanism of the ML 
models, as well as a more intuitive representation of how 
to process quality indicators that contribute to certain 
product quality indicators. The following will provide a 
detailed explanation of each step. 

 Figure 1. A schematic overview of the proposed 
modeling process 

2.1 Dataset development 
The proper input-output structure of a dataset is 

crucial for successful data mining. This involves 
understanding the cause-and-effect relationships that 
connect process quality indicators with the product 
quality indicator, in this case, the International 
Roughness Index (IRI). Three distinct types of 
parameters (i.e., features in the ML nomenclature) were 
considered in this research, namely design, construction, 

and operation parameters (each pertaining to a phase in 
the lifecycle of the road).  

As for the design-related parameters, this study 
considered the type of asphalt mix. While the design 
characteristics of the asphalt mix play a significant role 
in the long-term performance of the road, for the 
purposes of understanding the correlation between 
construction process quality and long-term pavement 
quality, a simplification was necessary. Instead of 
examining each individual design characteristic (such as 
bitumen content, aggregate type, etc.), only the mix type 
indicator was used. This choice was made because the 
focus of this research was not on exploring the individual 
impact of design characteristics on long-term 
performance, but rather on ensuring that the design phase 
was accurately represented in the ML model. This was 
achieved by consolidating all design parameters into the 
mix type indicator.   

The definition of quality of the asphalt construction 
process was adopted from the previous work of the 
authors [3], where the process quality is defined as the 
degree to which the asphalt layer was compacted 
sufficiently (i.e., enough compaction passes) at the right 
temperature (i.e., avoiding the compaction of the asphalt 
layer when it is too hot or too cold). More specifically, 
the construction process quality is assessed using the 
Effective Compaction Rate (ECR) index proposed by [4], 
as indicated in Equation (1). 

𝐸𝐶𝑅𝑝,𝑘 =
𝑛𝑝,𝑘

𝑁
(1) 

where  𝑛𝑝,𝑘  refers to the number of cells that have 
received ±𝑘 passes (i.e., tolerance margin) of the target 
number of passes, and at least 𝑝%  of received passes 
were within the defined compaction window. In this 
equation, 𝑁 represents the total number of measurement 
cells. 

In addition, the operation of the pavements during 
their service, such as the traffic intensity and weather, can 
also significantly influence the condition and 
performance of the pavements [8,11]. For the traffic 
loads, the author considered the average daily traffic and 
average daily truck traffic to reflect the daily intensity of 
the investigated highways. Therefore, in this study, the 
average hourly traffic intensities of three different types 
were considered, including passenger vehicles, heavy 
trucks, and medium trucks. When it comes to weather 
conditions, as pointed out in the literature [12], 
temperature variation and moisture change can have a 
great impact on the material properties of the pavement 
structure. It is shown that freeze-thaw cycles during 
pavement operation also contribute to the deterioration 
rate of the asphalt [13]. Therefore, this research 
considered the average annual temperature, average 
annual precipitation, and the number of freeze-thaw 



cycles. 
As for the labels in the dataset (i.e., the parameter about 
which the prediction is to be made), IRI is used as the 
sole metric. Although IRI is often recorded during 
regular inspections, it is a time-variant metric. To account 
for the complexity of changes in road usage, this study 
considers a rolling time window of 1 year instead of a 
long-term average of road use. This approach allows for 
a more accurate evaluation of the roads’ condition by 
considering the most recent IRI measurement and the 
amount of use the road has seen since then. Table 1 below 
summarizes the identified input-output structure. 

Table 1. The summary of the identified dataset structure 
Variable Description 

In
pu

t 

ECR The effective compaction rate, which 
was described in Equation 1 

Mixture type The type of the asphalt mixture 
Age The age of the pavement compared to the 

construction year 
Heavy truck 
intensity per 

workday 

The mean intensity of the heavy trucks of 
a certain road section on the workday 
from the previous year 

Medium truck 
intensity per 

workday 

The mean intensity of the medium trucks 
of a certain road section on the workday 
from the previous year 

Passenger car 
intensity per 

workday 

The mean intensity of the passenger 
vehicles of a certain road section on the 
workday from the previous year 

Annual mean 
temperature 

The mean value of the annual 
temperature of the road section from the 
previous year 

Annual mean 
precipitation 

The mean value of the annual 
precipitation of the road section from the 
previous year 

Annual freeze-
thaw cycle 

The annual number of freeze-thaw 
cycles of the road section from the 
previous year 

IRI-1 The IRI value from the previous year 

O
ut

pu
t IRI International Roughness Index, which 

quantitively reflects the roughness of the 
pavement 

2.2 Machine learning model development 
2.2.1 Selecting machine learning algorithms 

Based on the problem context of the research, two 
types of ML algorithms were used, namely random forest 
(RF) and gated recurrent unit (GRU).  

As a widely applied tree-based ML algorithm, 
random forest (RF) can solve both regression and 
classification problems using ensembled decision trees. 
An RF model is built by randomly ensembling various 
decision trees using the bagging method and obtaining 
the output(s) by voting [14]. As a powerful ML algorithm, 
RF can overcome the overfitting problem and improve 
the robustness against the outliers, without 
compromising the performance in handling non-linear 
classification and regression problems. The ensembling 

technique and bootstrapping also allow RF to achieve 
potentially good performance on small datasets. 

As previously mentioned, regression modelling faces 
great system non-linearities. To tackle the complexities 
of non-linear regression and provide better performance 
with time-series data, GRU was also selected. GRU is a 
special form of recurrent neural network (RNN) that can 
describe the dynamic behaviour of time-series data by 
circulating states in the networks. However, the 
conventional architecture of RNN soon showed its limits, 
because of problems such as the gradient’s vanishing and 
explosion, and the difficulty in learning long-term 
patterns. To tackle the aforementioned challenges, long 
short-term memory (LSTM) and gated recurrent unit 
(GRU) was developed and introduced as extensions of 
conventional RNN [15].  

Previous studies found that GRU has comparable or 
even surpassed the performance of LSTM [16]. In 
addition, although the structure of the GRU unit is similar 
to LSTM, the architecture of the GRU cell will require 
fewer external gating signals. Therefore, fewer 
parameters are needed, and the training process will be 
more efficient. Therefore, in this research, GRU was used. 

However, when applying GRU, one issue is that apart 
from the time-variant variables, such as IRI-1, traffic 
intensities, and climate conditions, other input features 
including ECR and mixture types cannot be processed by 
the default GRU layer, because these input features are 
time-invariant. Therefore, these time-variant features 
were converted into vectors using affine transformation 
as the internal state of the GRU architecture. This 
transformed initial state is then added to the hidden state 
of the GRU when calculating the output [17–19]. In 
addition, to further tackle the complexities and non-
linearities of the problems, a hybrid network can be used 
by adding more dense layers behind the GRU layer, thus 
increasing the depth of the network to boost its 
performance [9,10]. 

2.2.2 Hyperparameter optimization 

To obtain optimal performance of developed ML 
models, it is essential to fine-tune and optimize the model 
configurations. Table 2 presents the list of optimized 
hyperparameters from RF and GRU.  

A widely applied approach for hyperparameter 
optimization in ML is to use meta-heuristic methods, e.g., 
genetic algorithm (GA) or particle swarm optimization 
(PSO). This research used GA-based optimization of the 
ML models as proposed in the literature [20]. Figure 2 
represents the flowchart of the GA-based hyperparameter 
optimization framework.  

The developed dataset was first divided into 80% 
training and 20% testing subsets. Subsequently, the k-
fold cross-validation was applied to the training subset by 



further dividing the subset into k non-repeating sections. 
During the training process, the model was trained k 
times, using k-1 sub-training sets each time. The 
remaining sub-training set was then used for the 
evaluation of the model. By averaging the evaluation of 
the model k times, the fitness score was calculated. By 
using k-fold cross-validation, it can be ensured that all the 
samples of the training subset are involved in both the 
training and testing process. Therefore, this method 
reduces the sensitivity of the models' performances to 
how the training subset will be further split. Considering 
the trade-off in terms of computational time and accuracy, 
the value of k was set to 10. 

Figure 2. The GA-based hyperparameter optimisation 
framework  

Table 2. The summary of the selected hyperparameters 
required to be optimized 

ML 
algorithm 

Hyperparameter Description 

RF
 

n_estimators The number of decision trees 
in the RF structure. 

max_depth The allowed maximum depth 
of each decision tree. 

min_samples_split The minimum number of 
samples needed to split an 
internal node. 

min_samples_leaf The minimum number of 
samples required to be at a 
leaf node. 

G
RU

 

n_layers The number of the hybrid 
dense layer. 

n_neurons the number of neurons within 
each hybrid dense layer. 

units The number of GRU units. 
epochs The number of epochs for the 

model training. 

At the beginning of the optimization process, a 
random set of hyperparameter arrays are generated and 
used to develop the first generation of ML models. The 

performances of each model are assessed and through a 
ranking process, the best models are identified. By 
applying crossover and mutation on the top-ranking 
solutions, the subsequent generation of models is 
generated. The optimization process will continue until 
the stopping criteria are met.  

2.3 Model evaluation and interpretation 
Finally, the developed ML models were validated 

using the data outside the range of the training dataset. 
Several metrics were used to represent the regression 
performance of developed ML models, including R-
squared (R2), mean squared error (MSE), and mean 
absolute error (MAE). The equations of these three 
metrics were given below. 

𝑅2 = 1 −
∑ (�̂�𝑖 − �̅�)2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

(2) 

𝑀𝑆𝐸 =
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

𝑛

(3) 

𝑀𝐴𝐸 =
∑ |�̂�𝑖 − 𝑦𝑖|𝑛

𝑖=1

𝑛

(4) 

      where 𝑛  refers to the total number of samples, 𝑦𝑖  
refers to the true value, �̂�𝑖  refers to the prediction, and �̅� 
refers to the mean value of the sample.    

Additionally, among these metrics, R2 was also used 
as the fitness function in the GA-based model 
optimization process to represent the fitness of each 
examined chromosome. To explicitly represent the 
correlations between various process quality indicators 
and product quality indicators, the obtained regression 
models were interpreted in the form of feature 
importance, which was through a sensitivity analysis. 
The feature importance reflects how important the 
features are for the regression. Therefore, the feature 
importance analysis can provide explicit insights into the 
models, as well as the hidden correlations between inputs 
and outputs. For this purpose, the model with the highest 
predictive performance was used. To ensure that the 
feature importance interpretation can be applied to both 
ML algorithms, this research adopted the permutation 
importance as the interpreting approach, which randomly 
shuffles a certain input feature and re-evaluates the model 
performance. By comparing the performance changes 
with the baseline performance, the importance of a 
certain input feature can be obtained.  

3 Case study 
To validate the proposed framework, a case study was 

conducted. Two Dutch highway sections (A58 and A4) 
with a total length of 4.1 km, were selected. For both 
sections, PQi measurements and regular IRI inspections 
were available. The historical PQi measurements (i.e., 



construction process quality indicator) were retrieved
Table 3. An example of the developed dataset 

Samples Input features IRI 
ECR Mixture Age Annual 

Mean 
Temp.

Annual 
Mean 
Preci. 

Annual 
Freeze/Thaw 

Cycles

Passenger 
Cars/Day

Med. 
Trucks/Day

Heavy 
Trucks/Day

IRI-1 

1 0.1792 ZOAB-1 3 10.7713 2.2784 55 47318 3406 3476 1.32 0.93 
2 0.1372 ZOAB-1 3 10.7713 2.2784 55 47318 3406 3476 1.20 0.64 
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

from the database of the Dutch research network 
ASPARi [21]. The IRI data were retrieved from the 
IVON database and yearly inspectional records held by 
the Ministry of Infrastructure and Water Management of 
the Netherlands (Rijkswaterstaat). Regarding the data 
about the operation phase of the roads, two databases 
were used. For the traffic intensity, data were extracted 
from the INtensiteit op WEgVAkken (INWEVA) 
database of Rijkswaterstaat. This database covers the 
entire Dutch highway network and registers the historical 
traffic intensity of each hectometer section with specified 
BPS locations. Besides, the weather data were derived 
from the Koninklijk Nederlands Meteorologisch Instituut 
(KNMI) database. Table 3 provides an example of the 
developed dataset. 

Several parameters for the GA-based hyperparameter 
optimization were also defined including the size of the 
population, the size of offspring, crossover and mutation 
rates, and the total number of generations, as shown in 
Table 4. In this case study, the number of generations is 
the stopping criterion. 

Table 4. Pre-defined GA-parameters 
GA 

parameter 
Value Description 

Population 
size 

100 The total number of individuals 
contained in one population. 

Offspring 
size 

100 The total number of individuals that will 
be generated after each iteration. 

Crossover 
rate 

0.8 The probability of the occurrence of 
crossover between two individuals. 

Mutation 
rate 

0.2 The probability of the occurrence of 
mutation within one individual. 

Generation 
number 

100 The number of iterations 

3.1 Results 
As explained in section 2.2.1, two ML algorithms 

were selected and used, namely RF and GRU. Table 5 
presents the comparison of the two models in terms of 
MSE, MAE, and R2. Also, Figure 3 demonstrates the 
regression plots of each model, including both the 
training and testing processes. Additionally, Table 6 also 
summarizes the results of the optimization of the 
hyperparameters.  

Based on Table 5 and Figure 3, the developed GRU 
model significantly outperformed the RF model, where 

the latter is considerably underfitting, due to the high 
training and testing errors. This underfitting issue will be 
further discussed in the following section. The GRU 
model achieved a promising result regarding R2, with a 
value of 0.8284. Besides, the errors of the predictions 
compared to the true values, which are reflected by MSE 
and MAE, were well-controlled. The results between the 
training process and testing process are close, meaning 
that the developed GRU model has reasonable generality. 

Table 5. The summary of the results of the model 
validations 

Model R2 MSE MAE 
RF 0.5498 0.0123 0.0847 

GRU 0.8284 0.0050 0.0600 

As mentioned earlier, only the best-performing model 
(i.e., GRU model) was used for the feature importance. 
MAE was used as the metric to evaluate the impact of 
each feature on the overall model performance. 

Table 6. The summary of the optimization results 
regarding hyperparameter configurations 

ML 
algorithm 

Hyperparameter Value 

RF n_estimators 100 
max_depth None 

min_samples_split 20 
min_samples_leaf 1 

GRU n_layers 2 
n_neurons_first_layer 14 

n_neurons_second_layer 8 
units 18 

epochs 210 

Figure 4 shows the permutation importance of each 
input feature. Based on the results, the feature IRI-1 has 
the highest importance. By changing the values of this 
feature, the model performance reduces dramatically 
reduced. Compared to other features, features including 
the mean annual temperature and ECR also have rather 
higher importance, ranking second and third respectively. 
The feature importance of the rest of the features is quite 
lower, while the differences are not considerable. 
However, the feature representing the characteristics of 
the mixtures ranks the lowest among all the features.  



(a) Performance of RF model on training data (b) Performance of RF model on testing data

(c) Performance of GRU model on training data (d) Performance of GRU model on testing data
Figure 3. Regression plots of the developed models 

4 Discussion 
The main contribution of the presented research is to 

systematically investigate the correlation between 
process quality and product quality in asphalt 
construction. Asphalt is a highly complex material, 
where the quality in each phase of the lifecycle is 
influenced by various factors and also how the previous 
phases unfolded [22]. Therefore, this study provides an 
opportunity to scale up the regression task from the focus 
on one phase of the asphalt construction lifecycle to 
multiple phases. This would be significantly beneficial in 
the highly competitive environment of the asphalt 
construction sector. For instance, to the contractors, the 
explicit correlation between process and product quality 
can eventually help further justify the efforts to improve 
and optimize the planning and implementation of the on-
site operational strategies.  

The GRU model performed well despite the small 
dataset. The size of the dataset is essential in drawing 
reliable conclusions; however, the consideration of other 
factors such as the quality of the data and the model's 
ability to identify significant features and relationships is 
also crucial to the reliability and validity of the 
conclusions derived from data analysis. 

Essentially, unlike conventional ML algorithms, 
algorithms such as GRU will have a much higher level of 
abstraction, thus prone to be greedy to the amount of the 
data to prevent the overfitting problem. However, a 
previous study suggests that the high reliability of the 
model can be achieved even with small datasets [7]. In 
this study, the R2 of developed models reached 0.9941 
and 0.9893 on two different datasets. Besides, in the 
presented study, RF was also utilized. Compared to GRU, 
RF has a rather simpler architecture and less complexity. 
However, in the represented study, the developed RF 
model suffered from the underfitting problem with the 



small amount of data. This could potentially mean that 
the data used in this study is insufficient to support 
conventional ML algorithms, such as RF. On the other 
hand, the developed GRU model showed outstanding 
capability regarding feature extraction.  

Lastly, the previous measurements of the IRI 
outranked the other features. This is in line with various 
studies which also applied time-series regression to the 
IRI data [8,10]. Representing the construction process 
quality, ECR ranked third, which indicates a rather high 
impact of construction process quality on product quality. 
This further highlights the importance of investigating 
the asphalt product quality from the life-cycle 
perspective. In addition, the feature representing the 
properties of the asphalt mixtures ranked the lowest. This 
is in line with the findings of the previous studies [23]. 

5 Conclusion and future work 
This research aimed to investigate the correlations 

between asphalt construction process quality and product 

quality, using data-driven techniques. In this research, the 
IRI was selected as the output and representation of the 
pavement product quality indicator. 

A GA-based ML model development framework was 
designed, where RF and GRU were selected as the 
algorithms. For the validation, a case study was 
conducted. Based on the collected data, the developed 
GRU model significantly outperformed the RF model, 
with an R2 of 0.8284. After interpreting the permutation 
importance, ECR achieved the third highest importance, 
revealing the rather high correlation between process 
quality and product quality in asphalt construction.  

For future work, because the case study in this 
research was performed on a small dataset, the authors 
would like to expand the scope of the dataset. Besides, 
the presented research only focused on the IRI, while in 
the further study, more product quality indicators 
concerned with both in-place pavement properties (i.e., 
density, thickness, etc.) and long-term pavement 
performance (i.e., raveling, cracking, rutting, etc) can be 
considered.  

Figure 4. The premutation feature importance 
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